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Abstract
New parameters of the linear isotherm regularity, the so-called LIR equation of state, are used to
calculate the thermal pressure coefficient of dense fluids. The extent of the deviation between
real thermal pressure coefficients and thermal pressure coefficients by applying LIR are best
expressed through the use of new parameters in LIR. In this paper, the temperature dependence
of LIR parameters in the form of a first order have been developed to second order and third
order, and the temperature derivatives of new parameters are used to calculate thermal pressure
coefficients. The resulting model accurately predicts thermal pressure coefficients from the
lower density limit at the Boyle density and from the triple temperature up to about double the
Boyle temperature. The upper density limit appears to be reached at 1.4 times the Boyle
density. These problems have led us to try to establish a function for accurate calculation of the
thermal pressure coefficients, based on LIR theory for different fluids.

1. Introduction

One of the most difficult problems in the context of the
thermodynamics lies in the shortage of experimental data for
some basic quantities such as thermal pressure coefficients
(TPC), which are tabulated for extremely narrow temperature
ranges, normally around the ambient temperature for several
types of liquids. Furthermore, measurements of the thermal
pressure coefficients made by different researchers often reveal
systematic differences between their estimates.

The idea has been presented of a simple method using
direct calculation of the thermal pressure coefficient in place of
using the equation of state to analyze the experimental p–v–T
data. The equation of state described in papers is explicit in
the Helmholtz energy A, with the two independent variables
of density ρ and temperature T . At a given temperature,
the thermal pressure coefficient can be determined from the
Helmholtz energy [1].

Other work has led us to try to establish a correlation
function for accurate calculation of the thermal pressure

3 Author to whom any correspondence should be addressed.

coefficient for different fluids over wide temperature and
pressure ranges [2]. The most straightforward way of
deriving the thermal pressure coefficient is to calculate the
thermal pressure coefficient with the use of the principle
of corresponding states, which covers wide temperature and
pressure ranges. The principle of corresponding states calls for
the reduced thermal pressure at a given reduced temperature
and density to be the same for all fluids. This is true,
since the corresponding states approach is appropriate for
conditions of low density, in which the fluid molecules are
far apart and thus have little interaction. Moreover, at low
density, the gas behaves ideally and its thermal pressure
coefficient is temperature independent and approaches ρR in
the zero-density limit. However, as the density increases,
molecular interactions become increasingly important and the
principle of corresponding states fails. The leading term of
this correlation function is the thermal pressure coefficient
of a perfect gas, which each gas obeys in the low-density
range. Using this condition, the thermal pressure coefficient of
different supercritical fluids and refrigerants can be predicted
up to densities of ρ ≈ ρC. As mentioned before, as the
density increases, molecular interactions become increasingly
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important and the principle of corresponding states fails [3]. It
found out ‘empirically’ that at high densities it is possible to
apply the principle of corresponding states to different fluids
according to the magnitude of their critical densities versus
ρC = 10 mol dm−3.

A general regularity was reported for pure dense fluids,
namely testing literature results for p–v–T for pure dense
fluids, according to which (Z − 1)V 2 is linear with respect to
ρ2 for each isotherm, where Z ≡ pv/RT is the compression
factor [4]. This equation of state works very well for all types
of dense fluids, for densities greater than the Boyle density
but for temperatures below twice the Boyle temperature. The
regularity was originally suggested on the basis of a simple
lattice-type model applied to a Lennard-Jones (12, 6) fluid.
We shall refer to this equation of state as the ‘linear isotherm
regularity’, or simply LIR from now on. The LIR is used to
investigate some empirically known regularities [5, 6].

In the present work, LIR has been used to calculate the
thermal pressure coefficient. The purpose of this paper is to
point out an expression for the thermal pressure coefficient
of dense fluids using LIR. In this paper, in section 1, we
present a simple method that keeps the first-order temperature
dependence of parameters in LIR versus inverse temperature.
Then, the thermal pressure coefficient is calculated from LIR.
In section 2, the temperature dependence of the parameters
in LIR has been developed to second order. In section 3,
the temperature dependence of parameters in LIR has been
developed to third order and then the thermal pressure
coefficient is calculated by LIR in each state.

2. Theory

Liquids and dense fluids are usually considered to be compli-
cated on a molecular scale; they show a number of simple reg-
ularities [7]. The first is the Tait–Murnaghan relation, in which
the bulk modulus (reciprocal compressibility) of a liquid (or
solid) is linear in pressure [8]. The second is the linear relation
between the temperature and density at unit compression fac-
tor [9], which was discovered empirically in 1906. The third is
the common bulk modulus point, in which all liquid isotherms
of the reduced bulk modulus as a function of molar volume in-
tersect at essentially a single point [10]. The fourth is the linear
isotherm for dense fluids [3], for which we attempt to calculate
the internal pressure by modeling the average configurational
potential energy and then take its derivative with respect to vol-
ume. This assumes that any kinetic energy contribution to the
internal energy will vanish on taking the derivative, since the
temperature is held constant. It also approximates the aver-
age potential energy by summing the contribution from nearest
neighbors only, and assuming that the average number of near-
est neighbors is proportional to the density, as is the case for
liquid argon, rubidium, and cesium [11]. Combining the fore-
going results, a general regularity that was reported for pure
dense fluids, according to which (Z − 1)V 2 is linear with re-
spect to ρ2, each isotherm is,

(Z − 1) V 2 = A + Bρ2, (1)

where Z ≡ pv/RT is the compression factor, ρ = 1/V
is the molar density, and A and B are the temperature-
dependent parameters [3]. It is shown that this regularity
is compatible with equations of state based on statistical–
mechanical theory [12]. The model thus not only mimics
the linearity of (Z − 1)V 2 versus ρ2 but also predicts the
temperature dependence intercept and slope. This result
immediately shows why A has much similarity to the second
virial coefficient. It has the same temperature dependence
as that of a van der Waals gas, which usually gives a fair
representation of the temperature dependence for real gases in
the vicinity of the Boyle temperature [3]. The compression
factor of the system can be given by using the LIR:

p

ρRT
= 1 + Aρ2 + Bρ4. (2)

Therefore, the compression factor Z ≡ pv/RT versus ρ2

becomes quadratic for each isotherm. Using the experimental
data, the temperature dependence of the parameters will be
tested in the following sections.

2.1. First-order temperature dependence of parameters

We first derive the pressure by applying LIR, and then use the
first-order temperature dependence of the parameters to get the
final thermal pressure coefficient for the dense fluid, where

A = A2 − A1

RT
(3)

B = B1

RT
. (4)

Here A1 and B1 are related to the intermolecular attractive and
repulsive forces, respectively, while A2 is related to the non-
ideal thermal pressure and RT has its usual meaning.

In the present work, the starting point in the derivation
is equation (2). By substitution of equations (3) and (4) in
equation (2), the pressure can be given by using the LIR:

p = ρRT + A2ρ
3 RT − A1ρ

3 + B1ρ
5. (5)

We first derive an expression for the thermal pressure
coefficient using the first-order temperature dependence of the
parameters. The final result is TPC(1)

LIR:

(
∂p

∂T

)
ρ

= Rρ + A2 Rρ3. (6)

According to equation (6), the experimental value of density
and the value of A2 by applying LIR can be used to calculate
the value of the thermal pressure coefficient. According to
the LIR, A is linear versus 1/T ; the intercept gives the
value of A2. The values of A2 for nine fluids (Ar, N2, CO,
CH4, C2H6, n-C4H10, iso-C4H10, C6H6 and C6H5–CH3) are
listed in table 1, together with the temperature range of the
experimental data and the coefficient of determination. We
begin with C6H6 in its liquid range for calculating the thermal
pressure coefficient. Figure 1 shows the experimental values
of the thermal pressure coefficient versus density for C6H6
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Figure 1. The experimental values of the thermal pressure
coefficient [15] versus density for C6H6 fluid are compared with the
thermal pressure coefficient using the LIR(1) at 300 K.

Table 1. The calculated values of A2 for different fluids using
equation (3) and the coefficient of determination (R2).

Fluid A2 Tmin–Tmax (K) R2

Ar a 0.6547 84–400 0.9986
N2

b 0.6333 100–600 0.9976
CO c 0.7795 70–210 0.9997
CH4

d 0.7455 100–400 0.9927
C2H6

d 1.4550 150–285 0.9960
n-C4H10

d 1.6582 160–500 0.9919
Iso-C4H10

d 1.7191 200–380 0.9967
C6H6

e 1.3327 280–700 0.9962
C6H5–CH3

f 3.3818 180–680 0.9718

a Reference [13].
b Reference [14].
c Reference [15].
d Reference [16].
e Reference [17].
f Reference [18].

fluid compared with the thermal pressure coefficient using the
LIR(1) at 300 K. The thermal pressure coefficient using the
LIR(1) model yields inaccurate results for the liquid phase.
Also, this deviation is significant for the supercritical phase.
Also, we predict that this deviation leads to inaccurate values
of A2; for this purpose, we plot A versus 1/T . Figures 2(a), (b)
and 3(a), (b) show plots of A and B versus inverse temperature
for benzene [17] and toluene [18], respectively. It is clear that
A and B versus inverse temperature are not first order.

2.2. Second-order temperature dependence of parameters

In order to solve this problem, the LIR equation of state in the
form of truncated temperature series of A and B parameters has
been developed to second order for dense fluids. Figures 4(a)
and (b) show plots of A and B parameters versus inverse
temperature for toluene fluid. It is clear that A and B
versus inverse temperature are second order. Thus, extending

Figure 2. (a) Plot of A versus inverse temperature. The solid line is
the linear fit to the A data points, for C6H6. (b) Plot of B versus
inverse temperature. The solid line is the linear fit, for C6H6.

parameters A and B , we obtain the second-order equation as

A = A1 + A2

T
+ A3

T 2
(7)

B = B1 + B2

T
+ B3

T 2
. (8)

The starting point in the derivation is equation (2) again. By
substitution of equations (7) and (8) into equation (2), we
obtain the pressure for a dense fluid:

p = ρRT + A1ρ
3 RT + A2ρ

3 R + A3ρ
3 R

T

+ B1ρ
5 RT + B2ρ

5 R + B3ρ
5 R

T
. (9)

The A and B parameters and their temperature derivatives were
calculated from this model, and the final result is, for thermal
pressure coefficient to form TPC(2)

LIR,
(

∂p

∂T

)
ρ

= ρR+ A1ρ
3 R− A3ρ

3 R

T 2
+ B1ρ

5 R− B3ρ
5 R

T 2
. (10)

Therefore, it is possible to calculate the thermal pressure
coefficient at each density and temperature by knowing
A1, A3, B1 and B3. For this purpose we have plotted extended
parameters of A and B versus 1/T that intercept, and the
coefficients show the values of A1, A3, B1 and B3 that are
given in table 2. For comparison, figure 5 shows the
experimental values of the thermal pressure coefficient versus
density for C6H6 fluid, which are compared with the thermal
pressure coefficient using LIR(1) and LIR(2) at 300 K.
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Table 2. The calculated values of A1 and A3 using equation (7) and B1 and B3 using equation (8) for different fluids, and the coefficient of
determination (R2).

Fluid A1 A3 R2 B1 B3 R2

Ar 0.4991 −3 706.358 7 0.9995 −6.8495 −47.0034 0.9988
N2 0.5643 −2 842.113 6 0.9994 −0.0170 −413.7710 0.9997
CO 0.7401 −541.531 6 0.9997 −0.01536 −238.4968 0.9996
CH4 0.4379 −9 763.747 9 0.9989 0.0222 840.0285 0.9948
C2H6 0.6025 −35 228.587 9 0.9964 −0.0157 2 175.0593 0.9964
n-C4H10 1.0532 −38 685.930 6 0.9946 −0.0273 1 795.5946 0.9843
Iso-C4H10 0.8837 −61 899.017 01 0.9992 −0.0657 1 393.3018 0.9974
C6H6 0.7560 −106 881.225 0 0.9994 −0.01602 1 482.2852 0.9984
C6H5–CH3 0.4660 −324 389.763 1 0.9999 0.04642 24 435.4658 0.9997

Figure 3. (a) Plot of A versus inverse temperature. The solid line is
the linear fit to the A data points, for C6H5CH3. (b) Plot of B versus
inverse temperature. The solid line is the linear fit, for C6H5CH3.

2.3. Third-order temperature dependence of parameters

In another step, we performed a test to form the truncated
temperature series of A and B parameters to third order:

A = A1 + A2

T
+ A3

T 2
+ A4

T 3
(11)

B = B1 + B2

T
+ B3

T 2
+ B4

T 3
. (12)

The starting point in the derivation is equation (2) again. By
substitution of equations (11) and (12) into equation (2), we

Figure 4. (a) Plot of A versus inverse temperature. The solid line is
the linear fit to the A data points, for C6H5CH3. (b) Plot of B versus
inverse temperature. The solid line is the linear fit, for C6H5CH3.

obtain the pressure for a dense fluid:

p = ρRT + A1ρ
3 RT + A2ρ

3 R + A3ρ
3 R

T
+ A4ρ

3 R

T 2

+ B1ρ
5 RT + B2ρ

5 R + B3ρ
5 R

T
+ B4ρ

5 R

T 2
. (13)

The final result is for the thermal pressure coefficient to form
TPC(3)

LIR:(
∂p

∂T

)
ρ

= ρR + A1ρ
3 R − A3ρ

3 R

T 2
− 2A4ρ

3 R

T 3
+ B1ρ

5 R

− B3ρ
5 R

T 2
− 2B4ρ

5 R

T 3
. (14)
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Table 3. The calculated values of A1, A3 and A4 using equation (11) and B1, B3 and B4 using equation (12) for different fluids, and the
coefficient of determination (R2).

Fluid A1 A3 A4 R2 B1 B3 B4 R2

Ar 0.5573 1 588.2075 −255 206.700 9 0.9995 −0.0185 −1 674.3079 78 438.7202 0.9993
N2 0.5067 −11 194.1323 480 305.114 4 0.9997 −0.0165 −328.2972 −4 915.3978 0.9997
CO 0.3769 −15 207.4785 510 407.750 11 0.9999 0.0216 1260.1355 −52 155.7557 0.9999
CH4 0.6916 15 246.1106 −1 303 481.829 8 0.9994 −0.0346 −4 761.6612 291 952.9006 0.9975
C2H6 −3.6242 −596 340.0834 37 599 682.264 2 0.9999 0.7107 98 611.1758 −6 462 115.5835 0.9995
n-C4H10 −1.2557 −563 655.4140 43 116 619.415 2 0.9994 0.2815 72 010.11461 −5 766 835.6597 0.9968
Iso-C4H10 −0.7316 −434 114.1607 32 935 125.996 0 0.9994 0.10589 40 931.1604 −3 498 472.2574 0.9976
C6H6 −0.5826 −858 368.2127 99 883 029.983 8 0.9998 0.1615 101 177.5628 −13 250 883.3324 0.9996
C6H5–CH3 −0.16701 −431 729.1284 10 471 322.000 3 0.9999 0.1049 44 466.7211 −1 954 117.4199 0.9998

Figure 5. Experimental values of the thermal pressure coefficient
versus density for C6H6 fluid are compared with the thermal pressure
coefficient using LIR(1) and LIR(2) at 300 K.

On the basis of equation (14), to obtain the thermal
pressure coefficient it is necessary to determine the values of
A1, A3, A4, B1, B3 and B4; these values are given in table 3.
In contrast, figures 6 and 7 show the experimental values of
the thermal pressure coefficient versus density for benzene as a
liquid and as a supercritical fluid, which are compared with the
thermal pressure coefficient using LIR(1), LIR(2) and LIR(3) at
300 and 680 K, respectively.

3. Experimental tests and discussion

The thermal pressure coefficient is computed for dense liquid
and supercritical fluids using three different models. To
investigate the first-order temperature dependence of the
parameter A, the nine fluids serve as our primary test, because
of the abundance of available p–v–T data. The A2 values
calculated via equation (2) have been evaluated by applying
the coefficient of determination. The results are summarized
in table 1. In examining the ability of the LIR theory to
calculate the thermal pressure coefficients of dense fluids,
benzene [17] and toluene [18] serve because of the abundance
of available thermal pressure coefficients data. Such data
are more limited for the other fluids examined. When we

Figure 6. Experimental values of the thermal pressure coefficient
versus density for C6H6 fluid compared with the thermal pressure
coefficient using LIR(1), LIR(2) and LIR(3) at 300 K.

Figure 7. Experimental values of the thermal pressure coefficient
versus density for C6H6 fluid compared with the thermal pressure
coefficient using LIR(1), LIR(2) and LIR(3) at 680 K.

restricted the temperature series of the parameters A and B
to first order, it was seen that the points from the low densities
for TPC(1)

LIR deviate significantly from the experimental data.
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Table 4. Comparison between the calculated and experimental
values of (∂ P/∂T )ρ for liquid C6H6.

(∂p/∂T )ρ (MPa K−1)
T
(K)

P
(MPa)

ρ

(mol l−1) Exp LIR(1) LIR(2) LIR(3)

300.0000 0.0500 11.1661 1.3530 1.1051 1.3691 1.3949
300.0000 0.1013 11.1666 1.3532 1.1053 1.3693 1.3951
300.0000 0.1500 11.1671 1.3533 1.1054 1.3695 1.3953
300.0000 0.2000 11.1677 1.3534 1.1056 1.3696 1.3955
300.0000 0.3000 11.1687 1.3537 1.1059 1.3700 1.3959
300.0000 0.5000 11.1709 1.3549 1.1065 1.3706 1.3967
300.0000 0.7000 11.1730 1.3558 1.1071 1.3713 1.3975
300.0000 1.0000 11.1762 1.3573 1.1080 1.3723 1.3988
300.0000 1.5000 11.1815 1.3573 1.1094 1.3740 1.4008
300.0000 2.0000 11.1867 1.3589 1.1109 1.3756 1.4028
300.0000 2.5000 11.1920 1.3604 1.1124 1.3773 1.4048
300.0000 3.0000 11.1972 1.3619 1.1139 1.3789 1.4068
300.0000 3.5000 11.2024 1.3635 1.1153 1.3806 1.4088
300.0000 4.0000 11.2076 1.3650 1.1168 1.3822 1.4107
300.0000 4.5000 11.2128 1.3666 1.1183 1.3839 1.4127
300.0000 4.8000 11.2159 1.3675 1.1191 1.3849 1.4139
300.0000 4.8757 11.2167 1.3677 1.1194 1.3851 1.4142
300.0000 5.0000 11.2180 1.3681 1.1197 1.3855 1.4147
300.0000 5.2000 11.2200 1.3688 1.1203 1.3862 1.4155
300.0000 5.5000 11.2231 1.3697 1.1212 1.3871 1.4167
300.0000 6.0000 11.2282 1.3713 1.1226 1.3888 1.4186
300.0000 6.5000 11.2334 1.3729 1.1241 1.3904 1.4206
300.0000 7.0000 11.2384 1.3745 1.1255 1.3920 1.4226
300.0000 8.0000 11.2486 1.3777 1.1284 1.3952 1.4265
300.0000 9.0000 11.2587 1.3810 1.1313 1.3984 1.4304
300.0000 10.0000 11.2687 1.3842 1.1341 1.4016 1.4342
300.0000 12.0000 11.2885 1.3909 1.1398 1.4080 1.4419
300.0000 15.0000 11.3179 1.4010 1.1482 1.4174 1.4534
300.0000 20.0000 11.3656 1.4183 1.1620 1.4327 1.4721
300.0000 30.0000 11.4569 1.4539 1.1887 1.4623 1.5085
300.0000 40.0000 11.5432 1.4905 1.2143 1.4906 1.5434
300.0000 50.0000 11.6251 1.5277 1.2390 1.5177 1.5772
300.0000 60.0000 11.7031 1.5652 1.2628 1.5437 1.6098

Table 5. Comparison between the calculated and experimental
values of (∂ P/∂T )ρ for supercritical C6H6.

(∂p/∂T )ρ (MPa K−1)
T
(K)

P
(MPa)

ρ

(mol l−1) Exp LIR(1) LIR(2) LIR(3)

680.0000 40.0000 7.2468 0.2351 0.3369 0.2518 0.2125
680.0000 50.0000 7.6593 0.2735 0.3903 0.2879 0.2461
680.0000 60.0000 7.9817 0.3073 0.4360 0.3183 0.2753
680.0000 70.0000 8.2470 0.3377 0.4763 0.3448 0.3013
680.0000 80.0000 8.4728 0.3658 0.5127 0.3685 0.3251
680.0000 90.0000 8.6697 0.3920 0.5458 0.3898 0.3470
680.0000 100.0000 8.8443 0.41660 0.5765 0.4094 0.3675

To decrease adequately the deviation in the thermal pressure
coefficient from the experimental data, it was necessary to
extend the temperature series of the parameters A and B to
second order. Nevertheless, it is only for some monatomic
fluid similar to Ar that the temperature dependences of
the parameters A and B themselves are satisfactory to
first order. Therefore, the present approach for obtaining
the thermal pressure coefficient from p–v–T data contrasts
with the experimental data by extension of the temperature
series of the parameters A and B to second order and its

Table 6. Comparison between the calculated and experimental
values of of (∂ P/∂T )ρ for liquid C6H5–CH3.

(∂p/∂T )ρ (MPa K−1)
T
(K)

P
(MPa)

ρ

(mol l−1) Exp LIR(1) LIR(2) LIR(3)

280.0000 0.0100 9.5255 1.3821 2.5240 1.4252 1.3733
280.0000 0.0200 9.5256 1.3821 2.5241 1.4252 1.3733
280.0000 0.0500 9.5258 1.3821 2.5243 1.4252 1.3733
280.0000 0.1013 9.5262 1.3821 2.5246 1.4252 1.3733
280.0000 0.1500 9.5265 1.3821 2.5248 1.4253 1.3733
280.0000 0.3000 9.5275 1.3820 2.5256 1.4253 1.3733
280.0000 0.5000 9.5289 1.3820 2.5267 1.4254 1.3733
280.0000 0.7000 9.5303 1.3819 2.5278 1.4255 1.3734
280.0000 1.0000 9.5323 1.3819 2.5293 1.4256 1.3734
280.0000 1.5000 9.5357 1.3818 2.5320 1.4258 1.3735
280.0000 2.0000 9.5391 1.3818 2.5346 1.4260 1.3735
280.0000 2.5000 9.5425 1.3818 2.5373 1.4262 1.3736
280.0000 3.0000 9.5459 1.3818 2.5399 1.4265 1.3736
280.0000 3.5000 9.5493 1.3818 2.5426 1.4267 1.3737
280.0000 4.0000 9.5527 1.3819 2.5453 1.4269 1.3738
280.0000 4.2365 9.5542 1.3819 2.5464 1.4269 1.3738
280.0000 4.5000 9.5560 1.3820 2.5478 1.4270 1.3738
280.0000 5.0000 9.5594 1.3821 2.5505 1.4272 1.3739
280.0000 5.5000 9.5627 1.3822 2.5531 1.4274 1.3739
280.0000 6.0000 9.5660 1.3824 2.5557 1.4276 1.3739
280.0000 6.5000 9.5694 1.3826 2.5583 1.4278 1.3740
280.0000 7.0000 9.5727 1.3827 2.5609 1.4280 1.3740
280.0000 8.0000 9.5793 1.3832 2.5661 1.4283 1.3741
280.0000 9.0000 9.5859 1.3837 2.5713 1.4287 1.3741
280.0000 10.0000 9.5924 1.3843 2.5765 1.4290 1.3742
280.0000 12.0000 9.6054 1.3856 2.5867 1.4297 1.3743
280.0000 15.0000 9.6246 1.3879 2.6019 1.4306 1.3743
280.0000 20.0000 9.6550 1.3926 2.6262 1.4318 1.3742
280.0000 25.0000 9.6866 1.3979 2.6515 1.4330 1.3739
280.0000 30.0000 9.7164 1.4037 2.6756 1.4339 1.3734
280.0000 35.0000 9.7455 1.4098 2.6992 1.4346 1.3727
280.0000 40.0000 9.7739 1.4160 2.7224 1.4351 1.3718
280.0000 50.0000 9.8287 1.4285 2.7675 1.4356 1.3696
280.0000 60.0000 9.8811 1.4409 2.8111 1.4355 1.3669
280.0000 70.0000 9.9314 1.4525 2.8535 1.4348 1.3636
280.0000 80.0000 9.9796 1.4633 2.8944 1.4336 1.3598
280.0000 90.0000 10.0260 1.4729 2.9342 1.4320 1.3556
280.0000 100.0000 10.0708 1.4813 2.9729 1.4299 1.3511

derivatives. So, the thermal pressure coefficient gives the form
of TPC(2)

LIR.
We also considered an even more accurate estimate,

namely extension of the temperature series of the parameters
A and B to third order. Then we introduce the explicit
parameters and temperature dependences resulting from the
p–v–T data. The final result is for thermal pressure coefficient
to form TPC(3)

LIR. In contrast, figures 8 and 9 show the
experimental values of the thermal pressure coefficient versus
density for liquid and supercritical fluid toluene, compared
with the thermal pressure coefficient using LIR(1), LIR(2) and
LIR(3) at 280 and 680 K, respectively. The experimental
and calculated values of the thermal pressure coefficient using
LIR(1), LIR(2) and LIR(3) are also compared in tables 4–7
for benzene and toluene fluids. Although all three models
capture the qualitative features for dense fluids, only the
calculated values of the thermal pressure coefficient using
the LIR(2) model produce quantitative agreement. Tables 4–
7 present a greater test of these models, because only the
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Figure 8. Experimental values of the thermal pressure coefficient
versus density for C6H5CH3 fluid compared with the thermal
pressure coefficient using LIR(1), LIR(2) and LIR(3) at 280 K.

Table 7. Comparison between the calculated and experimental
values of (∂ P/∂T )ρ for supercritical C6H5–CH3.

(∂p/∂T )ρ (MPa K−1)
T
(K)

P
(MPa)

ρ

(mol l−1) Exp LIR(1) LIR(2) LIR(3)

660.0000 25.0000 5.9795 0.2088 0.6544 0.2031 0.1949
660.0000 30.0000 6.2172 0.2337 0.7314 0.2236 0.2159
660.0000 35.0000 6.4112 0.2526 0.7987 0.2413 0.2342
660.0000 40.0000 6.5762 0.2753 0.8591 0.2570 0.2508
660.0000 50.0000 6.8491 0.3096 0.9657 0.2846 0.2801
660.0000 60.0000 7.0721 0.3390 1.0593 0.3085 0.3060
660.0000 70.0000 7.2623 0.3645 1.1438 0.3299 0.3296
660.0000 80.0000 7.4293 0.3870 1.2216 0.3495 0.3513
660.0000 90.0000 7.5788 0.4070 1.2943 0.3677 0.3718
660.0000 100.0000 7.7149 0.4247 1.3630 0.3847 0.3912

LIR(2) model is able to predict accurately both the thermal
pressure coefficient of the liquid and supercritical fluids. The
LIR(3) model yields good results for toluene, but deviates
significantly for benzene, in contrast to the experimental
values of the thermal pressure coefficient, whereas the LIR(1)

model is rather inaccurate for both benzene and toluene
fluids.

4. Result

In this paper, we have derived an expression for the
thermal pressure coefficient of dense fluids (N2, Ar, CO,
CH4, C2H6, n-C4H10, iso-C4H10, C6H6C6H5–CH3) using
the linear isotherm regularity. Unlike previous models,
it has been shown in this work that the thermal pressure
coefficient can be obtained without employing any reduced
Helmholtz energy. Only p–v–T experimental data have been
used for calculating the thermal pressure coefficient [19].
Comparison of the calculated values of the thermal pressure
coefficient using the linear isotherm regularity with the values
obtained experimentally show that validity of the use of the

Figure 9. Experimental values of the thermal pressure coefficient
versus density for C6H5CH3 fluid compared with the thermal
pressure coefficient using LIR(1), LIR(2) and LIR(3) at 660 K.

linear isotherm regularity for studying the thermal pressure
coefficient of monatomic dense fluids is doubtful. The validity
of the use of the linear isotherm regularity equation state
for calculating the thermal pressure coefficient of polyatomic
dense fluids is also imprecise. In this work, it has been shown
that the temperature dependences of the intercept and the slope
using the linear isotherm regularity are nonlinear. This problem
has led us to try to obtain the expression for the thermal
pressure coefficient using the extended intercept and slope of
the linearity parameters versus inverse temperature to second
order. The thermal pressure coefficients predicted from this
simple model are in good agreement with experimental data.
The results show that the accuracy of this method is generally
quite good.
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