Calculation of thermal pressure coefficient of dense fluids using the linear isotherm regularity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys.: Condens. Matter 20075102
(http://iopscience.iop.org/0953-8984/20/7/075102)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 29/05/2010 at 10:33

Please note that terms and conditions apply.

Calculation of thermal pressure coefficient of dense fluids using the linear isotherm regularity

Vahid Moeini ${ }^{1,3}$, Feridon Ashrafi ${ }^{2}$, Mahnaz Karri ${ }^{2}$ and Hojatolaeh Rahimi ${ }^{1}$
${ }^{1}$ Payame Noor University, Behshahr Center, Behshahr, Iran
${ }^{2}$ Payame Noor University, Sari Center, Sari, Iran
E-mail: V_moeini@yahoo.com

Received 4 October 2007, in final form 30 November 2007
Published 25 January 2008
Online at stacks.iop.org/JPhysCM/20/075102

Abstract

New parameters of the linear isotherm regularity, the so-called LIR equation of state, are used to calculate the thermal pressure coefficient of dense fluids. The extent of the deviation between real thermal pressure coefficients and thermal pressure coefficients by applying LIR are best expressed through the use of new parameters in LIR. In this paper, the temperature dependence of LIR parameters in the form of a first order have been developed to second order and third order, and the temperature derivatives of new parameters are used to calculate thermal pressure coefficients. The resulting model accurately predicts thermal pressure coefficients from the lower density limit at the Boyle density and from the triple temperature up to about double the Boyle temperature. The upper density limit appears to be reached at 1.4 times the Boyle density. These problems have led us to try to establish a function for accurate calculation of the thermal pressure coefficients, based on LIR theory for different fluids.

1. Introduction

One of the most difficult problems in the context of the thermodynamics lies in the shortage of experimental data for some basic quantities such as thermal pressure coefficients (TPC), which are tabulated for extremely narrow temperature ranges, normally around the ambient temperature for several types of liquids. Furthermore, measurements of the thermal pressure coefficients made by different researchers often reveal systematic differences between their estimates.

The idea has been presented of a simple method using direct calculation of the thermal pressure coefficient in place of using the equation of state to analyze the experimental $p-v-T$ data. The equation of state described in papers is explicit in the Helmholtz energy A, with the two independent variables of density ρ and temperature T. At a given temperature, the thermal pressure coefficient can be determined from the Helmholtz energy [1].

Other work has led us to try to establish a correlation function for accurate calculation of the thermal pressure

[^0]coefficient for different fluids over wide temperature and pressure ranges [2]. The most straightforward way of deriving the thermal pressure coefficient is to calculate the thermal pressure coefficient with the use of the principle of corresponding states, which covers wide temperature and pressure ranges. The principle of corresponding states calls for the reduced thermal pressure at a given reduced temperature and density to be the same for all fluids. This is true, since the corresponding states approach is appropriate for conditions of low density, in which the fluid molecules are far apart and thus have little interaction. Moreover, at low density, the gas behaves ideally and its thermal pressure coefficient is temperature independent and approaches ρR in the zero-density limit. However, as the density increases, molecular interactions become increasingly important and the principle of corresponding states fails. The leading term of this correlation function is the thermal pressure coefficient of a perfect gas, which each gas obeys in the low-density range. Using this condition, the thermal pressure coefficient of different supercritical fluids and refrigerants can be predicted up to densities of $\rho \approx \rho_{\mathrm{C}}$. As mentioned before, as the density increases, molecular interactions become increasingly
important and the principle of corresponding states fails [3]. It found out 'empirically' that at high densities it is possible to apply the principle of corresponding states to different fluids according to the magnitude of their critical densities versus $\rho_{\mathrm{C}}=10 \mathrm{~mol} \mathrm{dm}^{-3}$.

A general regularity was reported for pure dense fluids, namely testing literature results for $p-v-T$ for pure dense fluids, according to which $(Z-1) V^{2}$ is linear with respect to ρ^{2} for each isotherm, where $Z \equiv p v / R T$ is the compression factor [4]. This equation of state works very well for all types of dense fluids, for densities greater than the Boyle density but for temperatures below twice the Boyle temperature. The regularity was originally suggested on the basis of a simple lattice-type model applied to a Lennard-Jones $(12,6)$ fluid. We shall refer to this equation of state as the 'linear isotherm regularity', or simply LIR from now on. The LIR is used to investigate some empirically known regularities [5, 6].

In the present work, LIR has been used to calculate the thermal pressure coefficient. The purpose of this paper is to point out an expression for the thermal pressure coefficient of dense fluids using LIR. In this paper, in section 1, we present a simple method that keeps the first-order temperature dependence of parameters in LIR versus inverse temperature. Then, the thermal pressure coefficient is calculated from LIR. In section 2, the temperature dependence of the parameters in LIR has been developed to second order. In section 3, the temperature dependence of parameters in LIR has been developed to third order and then the thermal pressure coefficient is calculated by LIR in each state.

2. Theory

Liquids and dense fluids are usually considered to be complicated on a molecular scale; they show a number of simple regularities [7]. The first is the Tait-Murnaghan relation, in which the bulk modulus (reciprocal compressibility) of a liquid (or solid) is linear in pressure [8]. The second is the linear relation between the temperature and density at unit compression factor [9], which was discovered empirically in 1906. The third is the common bulk modulus point, in which all liquid isotherms of the reduced bulk modulus as a function of molar volume intersect at essentially a single point [10]. The fourth is the linear isotherm for dense fluids [3], for which we attempt to calculate the internal pressure by modeling the average configurational potential energy and then take its derivative with respect to volume. This assumes that any kinetic energy contribution to the internal energy will vanish on taking the derivative, since the temperature is held constant. It also approximates the average potential energy by summing the contribution from nearest neighbors only, and assuming that the average number of nearest neighbors is proportional to the density, as is the case for liquid argon, rubidium, and cesium [11]. Combining the foregoing results, a general regularity that was reported for pure dense fluids, according to which $(Z-1) V^{2}$ is linear with respect to ρ^{2}, each isotherm is,

$$
\begin{equation*}
(Z-1) V^{2}=A+B \rho^{2}, \tag{1}
\end{equation*}
$$

where $Z \equiv p v / R T$ is the compression factor, $\rho=1 / V$ is the molar density, and A and B are the temperaturedependent parameters [3]. It is shown that this regularity is compatible with equations of state based on statisticalmechanical theory [12]. The model thus not only mimics the linearity of $(Z-1) V^{2}$ versus ρ^{2} but also predicts the temperature dependence intercept and slope. This result immediately shows why A has much similarity to the second virial coefficient. It has the same temperature dependence as that of a van der Waals gas, which usually gives a fair representation of the temperature dependence for real gases in the vicinity of the Boyle temperature [3]. The compression factor of the system can be given by using the LIR:

$$
\begin{equation*}
\frac{p}{\rho R T}=1+A \rho^{2}+B \rho^{4} \tag{2}
\end{equation*}
$$

Therefore, the compression factor $Z \equiv p v / R T$ versus ρ^{2} becomes quadratic for each isotherm. Using the experimental data, the temperature dependence of the parameters will be tested in the following sections.

2.1. First-order temperature dependence of parameters

We first derive the pressure by applying LIR, and then use the first-order temperature dependence of the parameters to get the final thermal pressure coefficient for the dense fluid, where

$$
\begin{gather*}
A=A_{2}-\frac{A_{1}}{R T} \tag{3}\\
B=\frac{B_{1}}{R T} \tag{4}
\end{gather*}
$$

Here A_{1} and B_{1} are related to the intermolecular attractive and repulsive forces, respectively, while A_{2} is related to the nonideal thermal pressure and $R T$ has its usual meaning.

In the present work, the starting point in the derivation is equation (2). By substitution of equations (3) and (4) in equation (2), the pressure can be given by using the LIR:

$$
\begin{equation*}
p=\rho R T+A_{2} \rho^{3} R T-A_{1} \rho^{3}+B_{1} \rho^{5} . \tag{5}
\end{equation*}
$$

We first derive an expression for the thermal pressure coefficient using the first-order temperature dependence of the parameters. The final result is $\mathrm{TPC}_{\mathrm{LIR}}^{(1)}$:

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{\rho}=R \rho+A_{2} R \rho^{3} \tag{6}
\end{equation*}
$$

According to equation (6), the experimental value of density and the value of A_{2} by applying LIR can be used to calculate the value of the thermal pressure coefficient. According to the LIR, A is linear versus $1 / T$; the intercept gives the value of A_{2}. The values of A_{2} for nine fluids ($\mathrm{Ar}, \mathrm{N}_{2}, \mathrm{CO}$, $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, n-\mathrm{C}_{4} \mathrm{H}_{10}$, iso- $\mathrm{C}_{4} \mathrm{H}_{10}, \mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$) are listed in table 1, together with the temperature range of the experimental data and the coefficient of determination. We begin with $\mathrm{C}_{6} \mathrm{H}_{6}$ in its liquid range for calculating the thermal pressure coefficient. Figure 1 shows the experimental values of the thermal pressure coefficient versus density for $\mathrm{C}_{6} \mathrm{H}_{6}$

Figure 1. The experimental values of the thermal pressure coefficient [15] versus density for $\mathrm{C}_{6} \mathrm{H}_{6}$ fluid are compared with the thermal pressure coefficient using the $\operatorname{LIR}^{(1)}$ at 300 K .

Table 1. The calculated values of A_{2} for different fluids using equation (3) and the coefficient of determination $\left(R^{2}\right)$.

Fluid	A_{2}	$T_{\text {min }}-T_{\text {max }}(\mathrm{K})$	R^{2}
$\mathrm{Ar}^{\text {a }}$	0.6547	84-400	0.9986
$\mathrm{N}_{2}{ }^{\text {b }}$	0.6333	100-600	0.9976
$\mathrm{CO}^{\text {c }}$	0.7795	70-210	0.9997
$\mathrm{CH}_{4}{ }^{\text {d }}$	0.7455	100-400	0.9927
$\mathrm{C}_{2} \mathrm{H}_{6}{ }^{\text {d }}$	1.4550	150-285	0.9960
$n-\mathrm{C}_{4} \mathrm{H}_{10}{ }^{\text {d }}$	1.6582	160-500	0.9919
Iso-C4 $\mathrm{H}_{10}{ }^{\text {d }}$	1.7191	200-380	0.9967
$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{\text {e }}$	1.3327	280-700	0.9962
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}{ }^{\text {f }}$	3.3818	180-680	0.9718

${ }^{a}$ Reference [13].
${ }^{\mathrm{b}}$ Reference [14].
${ }^{\text {c }}$ Reference [15].
${ }^{d}$ Reference [16].
${ }^{\text {e }}$ Reference [17].
${ }^{\mathrm{f}}$ Reference [18].
fluid compared with the thermal pressure coefficient using the $\operatorname{LIR}^{(1)}$ at 300 K . The thermal pressure coefficient using the LIR ${ }^{(1)}$ model yields inaccurate results for the liquid phase. Also, this deviation is significant for the supercritical phase. Also, we predict that this deviation leads to inaccurate values of A_{2}; for this purpose, we plot A versus $1 / T$. Figures 2(a), (b) and 3(a), (b) show plots of A and B versus inverse temperature for benzene [17] and toluene [18], respectively. It is clear that A and B versus inverse temperature are not first order.

2.2. Second-order temperature dependence of parameters

In order to solve this problem, the LIR equation of state in the form of truncated temperature series of A and B parameters has been developed to second order for dense fluids. Figures 4(a) and (b) show plots of A and B parameters versus inverse temperature for toluene fluid. It is clear that A and B versus inverse temperature are second order. Thus, extending

Figure 2. (a) Plot of A versus inverse temperature. The solid line is the linear fit to the A data points, for $\mathrm{C}_{6} \mathrm{H}_{6}$. (b) Plot of B versus inverse temperature. The solid line is the linear fit, for $\mathrm{C}_{6} \mathrm{H}_{6}$.
parameters A and B, we obtain the second-order equation as

$$
\begin{align*}
& A=A_{1}+\frac{A_{2}}{T}+\frac{A_{3}}{T^{2}} \tag{7}\\
& B=B_{1}+\frac{B_{2}}{T}+\frac{B_{3}}{T^{2}} . \tag{8}
\end{align*}
$$

The starting point in the derivation is equation (2) again. By substitution of equations (7) and (8) into equation (2), we obtain the pressure for a dense fluid:

$$
\begin{align*}
p= & \rho R T+A_{1} \rho^{3} R T+A_{2} \rho^{3} R+\frac{A_{3} \rho^{3} R}{T} \\
& +B_{1} \rho^{5} R T+B_{2} \rho^{5} R+\frac{B_{3} \rho^{5} R}{T} . \tag{9}
\end{align*}
$$

The A and B parameters and their temperature derivatives were calculated from this model, and the final result is, for thermal pressure coefficient to form $\mathrm{TPC}_{\mathrm{LIR}}^{(2)}$,

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{\rho}=\rho R+A_{1} \rho^{3} R-\frac{A_{3} \rho^{3} R}{T^{2}}+B_{1} \rho^{5} R-\frac{B_{3} \rho^{5} R}{T^{2}} \tag{10}
\end{equation*}
$$

Therefore, it is possible to calculate the thermal pressure coefficient at each density and temperature by knowing A_{1}, A_{3}, B_{1} and B_{3}. For this purpose we have plotted extended parameters of A and B versus $1 / T$ that intercept, and the coefficients show the values of A_{1}, A_{3}, B_{1} and B_{3} that are given in table 2. For comparison, figure 5 shows the experimental values of the thermal pressure coefficient versus density for $\mathrm{C}_{6} \mathrm{H}_{6}$ fluid, which are compared with the thermal pressure coefficient using $\operatorname{LIR}^{(1)}$ and $\operatorname{LIR}^{(2)}$ at 300 K .

Table 2. The calculated values of A_{1} and A_{3} using equation (7) and B_{1} and B_{3} using equation (8) for different fluids, and the coefficient of determination $\left(R^{2}\right)$.

Fluid	A_{1}	A_{3}	R^{2}	B_{1}	B_{3}	R^{2}
Ar	0.4991	-3706.3587	0.9995	-6.8495	-47.0034	0.9988
$\mathrm{~N}_{2}$	0.5643	-2842.1136	0.9994	-0.0170	-413.7710	0.9997
CO	0.7401	-541.5316	0.9997	-0.01536	-238.4968	0.9996
CH_{4}	0.4379	-9763.7479	0.9989	0.0222	840.0285	0.9948
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.6025	-35228.5879	0.9964	-0.0157	2175.0593	0.9964
$n-\mathrm{C}_{4} \mathrm{H}_{10}$	1.0532	-38685.9306	0.9946	-0.0273	1795.5946	0.9843
$\mathrm{Iso}_{4}-\mathrm{C}_{4} \mathrm{H}_{10}$	0.8837	-61899.01701	0.9992	-0.0657	1393.3018	0.9974
$\mathrm{C}_{6} \mathrm{H}_{6}$	0.7560	-106881.2250	0.9994	-0.01602	1482.2852	0.9984
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$	0.4660	-324389.7631	0.9999	0.04642	24435.4658	0.9997

Figure 3. (a) Plot of A versus inverse temperature. The solid line is the linear fit to the A data points, for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$. (b) Plot of B versus inverse temperature. The solid line is the linear fit, for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$.

2.3. Third-order temperature dependence of parameters

In another step, we performed a test to form the truncated temperature series of A and B parameters to third order:

$$
\begin{align*}
& A=A_{1}+\frac{A_{2}}{T}+\frac{A_{3}}{T^{2}}+\frac{A_{4}}{T^{3}} \tag{11}\\
& B=B_{1}+\frac{B_{2}}{T}+\frac{B_{3}}{T^{2}}+\frac{B_{4}}{T^{3}} \tag{12}
\end{align*}
$$

The starting point in the derivation is equation (2) again. By substitution of equations (11) and (12) into equation (2), we

Figure 4. (a) Plot of A versus inverse temperature. The solid line is the linear fit to the A data points, for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$. (b) Plot of B versus inverse temperature. The solid line is the linear fit, for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$.
obtain the pressure for a dense fluid:

$$
\begin{align*}
p= & \rho R T+A_{1} \rho^{3} R T+A_{2} \rho^{3} R+\frac{A_{3} \rho^{3} R}{T}+\frac{A_{4} \rho^{3} R}{T^{2}} \\
& +B_{1} \rho^{5} R T+B_{2} \rho^{5} R+\frac{B_{3} \rho^{5} R}{T}+\frac{B_{4} \rho^{5} R}{T^{2}} . \tag{13}
\end{align*}
$$

The final result is for the thermal pressure coefficient to form $\mathrm{TPC}_{\text {LIR }}^{(3)}$:

$$
\begin{align*}
& \left(\frac{\partial p}{\partial T}\right)_{\rho}=\rho R+A_{1} \rho^{3} R-\frac{A_{3} \rho^{3} R}{T^{2}}-\frac{2 A_{4} \rho^{3} R}{T^{3}}+B_{1} \rho^{5} R \\
& \quad-\frac{B_{3} \rho^{5} R}{T^{2}}-\frac{2 B_{4} \rho^{5} R}{T^{3}} \tag{14}
\end{align*}
$$

Table 3. The calculated values of A_{1}, A_{3} and A_{4} using equation (11) and B_{1}, B_{3} and B_{4} using equation (12) for different fluids, and the coefficient of determination $\left(R^{2}\right)$.

Fluid	A_{1}	A_{3}	A_{4}	R^{2}	B_{1}	B_{3}	R_{4}	
Ar	0.5573	1588.2075	-255206.7009	0.9995	-0.0185	-1674.3079	78438.7202	0.9993
$\mathrm{~N}_{2}$	0.5067	-11194.1323	480305.1144	0.9997	-0.0165	-328.2972	-4915.3978	0.9997
CO	0.3769	-15207.4785	510407.75011	0.9999	0.0216	1260.1355	-52155.7557	0.9999
CH_{4}	0.6916	15246.1106	-1303481.8298	0.9994	-0.0346	-4761.6612	291952.9006	0.9975
$\mathrm{C}_{2} \mathrm{H}_{6}$	-3.6242	-596340.0834	37599682.2642	0.9999	0.7107	98611.1758	-6462115.5835	0.9995
$n-\mathrm{C}_{4} \mathrm{H}_{10}$	-1.2557	-563655.4140	43116619.4152	0.9994	0.2815	72010.11461	-5766835.6597	0.9968
$\mathrm{Iso}_{4}-\mathrm{C}_{4} \mathrm{H}_{10}$	-0.7316	-434114.1607	32935125.9960	0.9994	0.10589	40931.1604	-3498472.2574	0.9976
$\mathrm{C}_{6} \mathrm{H}_{6}$	-0.5826	-858368.2127	99883029.9838	0.9998	0.1615	101177.5628	-13250883.3324	0.9996
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$	-0.16701	-431729.1284	10471322.0003	0.9999	0.1049	44466.7211	-1954117.4199	0.9998

Figure 5. Experimental values of the thermal pressure coefficient versus density for $\mathrm{C}_{6} \mathrm{H}_{6}$ fluid are compared with the thermal pressure coefficient using $\operatorname{LIR}^{(1)}$ and $\operatorname{LIR}^{(2)}$ at 300 K .

On the basis of equation (14), to obtain the thermal pressure coefficient it is necessary to determine the values of $A_{1}, A_{3}, A_{4}, B_{1}, B_{3}$ and B_{4}; these values are given in table 3 . In contrast, figures 6 and 7 show the experimental values of the thermal pressure coefficient versus density for benzene as a liquid and as a supercritical fluid, which are compared with the thermal pressure coefficient using $\operatorname{LIR}^{(1)}, \operatorname{LIR}^{(2)}$ and $\operatorname{LIR}^{(3)}$ at 300 and 680 K , respectively.

3. Experimental tests and discussion

The thermal pressure coefficient is computed for dense liquid and supercritical fluids using three different models. To investigate the first-order temperature dependence of the parameter A, the nine fluids serve as our primary test, because of the abundance of available $p-v-T$ data. The A_{2} values calculated via equation (2) have been evaluated by applying the coefficient of determination. The results are summarized in table 1. In examining the ability of the LIR theory to calculate the thermal pressure coefficients of dense fluids, benzene [17] and toluene [18] serve because of the abundance of available thermal pressure coefficients data. Such data are more limited for the other fluids examined. When we

Figure 6. Experimental values of the thermal pressure coefficient versus density for $\mathrm{C}_{6} \mathrm{H}_{6}$ fluid compared with the thermal pressure coefficient using $\operatorname{LIR}^{(1)}, \operatorname{LIR}^{(2)}$ and $\operatorname{LIR}^{(3)}$ at 300 K .

Figure 7. Experimental values of the thermal pressure coefficient versus density for $\mathrm{C}_{6} \mathrm{H}_{6}$ fluid compared with the thermal pressure coefficient using $\operatorname{LIR}^{(1)}, \operatorname{LIR}^{(2)}$ and $\operatorname{LIR}^{(3)}$ at 680 K .
restricted the temperature series of the parameters A and B to first order, it was seen that the points from the low densities for $\mathrm{TPC}_{\mathrm{LIR}}^{(1)}$ deviate significantly from the experimental data.

Table 4. Comparison between the calculated and experimental values of $(\partial P / \partial T) \rho$ for liquid $\mathrm{C}_{6} \mathrm{H}_{6}$.

				$(\partial p / \partial T)_{\rho}\left(\mathrm{MPa} \mathrm{K}^{-1}\right)$			
T	P	ρ					
$(\mathrm{~K})$	(MPa)	$\left(\mathrm{mol} \mathrm{l}^{-1}\right)$	Exp	$\mathrm{LIR}^{(1)}$	$\mathrm{LIR}^{(2)}$	$\mathrm{LIR}^{(3)}$	
300.0000	0.0500	11.1661	1.3530	1.1051	1.3691	1.3949	
300.0000	0.1013	11.1666	1.3532	1.1053	1.3693	1.3951	
300.0000	0.1500	11.1671	1.3533	1.1054	1.3695	1.3953	
300.0000	0.2000	11.1677	1.3534	1.1056	1.3696	1.3955	
300.0000	0.3000	11.1687	1.3537	1.1059	1.3700	1.3959	
300.0000	0.5000	11.1709	1.3549	1.1065	1.3706	1.3967	
300.0000	0.7000	11.1730	1.3558	1.1071	1.3713	1.3975	
300.0000	1.0000	11.1762	1.3573	1.1080	1.3723	1.3988	
300.0000	1.5000	11.1815	1.3573	1.1094	1.3740	1.4008	
300.0000	2.0000	11.1867	1.3589	1.1109	1.3756	1.4028	
300.0000	2.5000	11.1920	1.3604	1.1124	1.3773	1.4048	
300.0000	3.0000	11.1972	1.3619	1.1139	1.3789	1.4068	
300.0000	3.5000	11.2024	1.3635	1.1153	1.3806	1.4088	
300.0000	4.0000	11.2076	1.3650	1.1168	1.3822	1.4107	
300.0000	4.5000	11.2128	1.3666	1.1183	1.3839	1.4127	
300.0000	4.8000	11.2159	1.3675	1.1191	1.3849	1.4139	
300.0000	4.8757	11.2167	1.3677	1.1194	1.3851	1.4142	
300.0000	5.0000	11.2180	1.3681	1.1197	1.3855	1.4147	
300.0000	5.2000	11.2200	1.3688	1.1203	1.3862	1.4155	
300.0000	5.5000	11.2231	1.3697	1.1212	1.3871	1.4167	
300.0000	6.0000	11.2282	1.3713	1.1226	1.3888	1.4186	
300.0000	6.5000	11.2334	1.3729	1.1241	1.3904	1.4206	
300.0000	7.0000	11.2384	1.3745	1.1255	1.3920	1.4226	
300.0000	8.0000	11.2486	1.3777	1.1284	1.3952	1.4265	
300.0000	9.0000	11.2587	1.3810	1.1313	1.3984	1.4304	
300.0000	10.0000	11.2687	1.3842	1.1341	1.4016	1.4342	
300.0000	12.0000	11.2885	1.3909	1.1398	1.4080	1.4419	
300.0000	15.0000	11.3179	1.4010	1.1482	1.4174	1.4534	
300.0000	20.0000	11.3656	1.4183	1.1620	1.4327	1.4721	
300.0000	30.0000	11.4569	1.4539	1.1887	1.4623	1.5085	
300.0000	40.0000	11.5432	1.4905	1.2143	1.4906	1.5434	
300.0000	50.0000	11.6251	1.5277	1.2390	1.5177	1.5772	
300.0000	60.0000	11.7031	1.5652	1.2628	1.5437	1.6098	

Table 5. Comparison between the calculated and experimental values of $(\partial P / \partial T) \rho$ for supercritical $\mathrm{C}_{6} \mathrm{H}_{6}$.

$\begin{aligned} & T \\ & (\mathrm{~K}) \end{aligned}$	$\begin{aligned} & P \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \rho \\ & \left(\mathrm{mol} \mathrm{l}^{-1}\right) \end{aligned}$	$(\partial p / \partial T)_{\rho}\left(\mathrm{MPa} \mathrm{K}^{-1}\right)$			
			Exp	$\operatorname{LIR}^{(1)}$	$\mathrm{LIR}^{(2)}$	$\operatorname{LIR}^{(3)}$
680.0000	40.0000	7.2468	0.2351	0.3369	0.2518	0.2125
680.0000	50.0000	7.6593	0.2735	0.3903	0.2879	0.2461
680.0000	60.0000	7.9817	0.3073	0.4360	0.3183	0.2753
680.0000	70.0000	8.2470	0.3377	0.4763	0.3448	0.3013
680.0000	80.0000	8.4728	0.3658	0.5127	0.3685	0.3251
680.0000	90.0000	8.6697	0.3920	0.5458	0.3898	0.3470
680.0000	100.0000	8.8443	0.41660	0.5765	0.4094	0.3675

To decrease adequately the deviation in the thermal pressure coefficient from the experimental data, it was necessary to extend the temperature series of the parameters A and B to second order. Nevertheless, it is only for some monatomic fluid similar to Ar that the temperature dependences of the parameters A and B themselves are satisfactory to first order. Therefore, the present approach for obtaining the thermal pressure coefficient from $p-v-T$ data contrasts with the experimental data by extension of the temperature series of the parameters A and B to second order and its

Table 6. Comparison between the calculated and experimental values of of $(\partial P / \partial T) \rho$ for liquid $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$.

				$(\partial p / \partial T)_{\rho}(\mathrm{MPa} \mathrm{K}$				
T		P	ρ					
$(\mathrm{~K})$	(MPa)	$\left(\mathrm{mol} \mathrm{l}^{-1}\right)$	Exp	$\mathrm{LIR}^{(1)}$	$\mathrm{LIR}^{(2)}$	$\mathrm{LIR}^{(3)}$		
280.0000	0.0100	9.5255	1.3821	2.5240	1.4252	1.3733		
280.0000	0.0200	9.5256	1.3821	2.5241	1.4252	1.3733		
280.0000	0.0500	9.5258	1.3821	2.5243	1.4252	1.3733		
280.0000	0.1013	9.5262	1.3821	2.5246	1.4252	1.3733		
280.0000	0.1500	9.5265	1.3821	2.5248	1.4253	1.3733		
280.0000	0.3000	9.5275	1.3820	2.5256	1.4253	1.3733		
280.0000	0.5000	9.5289	1.3820	2.5267	1.4254	1.3733		
280.0000	0.7000	9.5303	1.3819	2.5278	1.4255	1.3734		
280.0000	1.0000	9.5323	1.3819	2.5293	1.4256	1.3734		
280.0000	1.5000	9.5357	1.3818	2.5320	1.4258	1.3735		
280.0000	2.0000	9.5391	1.3818	2.5346	1.4260	1.3735		
280.0000	2.5000	9.5425	1.3818	2.5373	1.4262	1.3736		
280.0000	3.0000	9.5459	1.3818	2.5399	1.4265	1.3736		
280.0000	3.5000	9.5493	1.3818	2.5426	1.4267	1.3737		
280.0000	4.0000	9.5527	1.3819	2.5453	1.4269	1.3738		
280.0000	4.2365	9.5542	1.3819	2.5464	1.4269	1.3738		
280.0000	4.5000	9.5560	1.3820	2.5478	1.4270	1.3738		
280.0000	5.0000	9.5594	1.3821	2.5505	1.4272	1.3739		
280.0000	5.5000	9.5627	1.3822	2.5531	1.4274	1.3739		
280.0000	6.0000	9.5660	1.3824	2.5557	1.4276	1.3739		
280.0000	6.5000	9.5694	1.3826	2.5583	1.4278	1.3740		
280.0000	7.0000	9.5727	1.3827	2.5609	1.4280	1.3740		
280.0000	8.0000	9.5793	1.3832	2.5661	1.4283	1.3741		
280.0000	9.0000	9.5859	1.3837	2.5713	1.4287	1.3741		
280.0000	10.0000	9.5924	1.3843	2.5765	1.4290	1.3742		
280.0000	12.0000	9.6054	1.3856	2.5867	1.4297	1.3743		
280.0000	15.0000	9.6246	1.3879	2.6019	1.4306	1.3743		
280.0000	20.0000	9.6550	1.3926	2.6262	1.4318	1.3742		
280.0000	25.0000	9.6866	1.3979	2.6515	1.4330	1.3739		
280.0000	30.0000	9.7164	1.4037	2.6756	1.4339	1.3734		
280.0000	35.0000	9.7455	1.4098	2.6992	1.4346	1.3727		
280.0000	40.0000	9.7739	1.4160	2.7224	1.4351	1.3718		
280.0000	50.0000	9.8287	1.4285	2.7675	1.4356	1.3696		
280.0000	60.0000	9.8811	1.4409	2.8111	1.4355	1.3669		
280.0000	70.0000	9.9314	1.4525	2.8535	1.4348	1.3636		
280.0000	80.0000	9.9796	1.4633	2.8944	1.4336	1.3598		
280.0000	90.0000	10.0260	1.4729	2.9342	1.4320	1.3556		
280.0000	100.0000	10.0708	1.4813	2.9729	1.4299	1.3511		

derivatives. So, the thermal pressure coefficient gives the form of $\mathrm{TPC}_{\text {LIR }}^{(2)}$.

We also considered an even more accurate estimate, namely extension of the temperature series of the parameters A and B to third order. Then we introduce the explicit parameters and temperature dependences resulting from the $p-v-T$ data. The final result is for thermal pressure coefficient to form $\mathrm{TPC}_{\mathrm{LIR}}^{(3)}$. In contrast, figures 8 and 9 show the experimental values of the thermal pressure coefficient versus density for liquid and supercritical fluid toluene, compared with the thermal pressure coefficient using $\operatorname{LIR}^{(1)}, \operatorname{LIR}^{(2)}$ and $\operatorname{LIR}^{(3)}$ at 280 and 680 K , respectively. The experimental and calculated values of the thermal pressure coefficient using $\operatorname{LIR}^{(1)}, \operatorname{LIR}^{(2)}$ and $\operatorname{LIR}^{(3)}$ are also compared in tables 4-7 for benzene and toluene fluids. Although all three models capture the qualitative features for dense fluids, only the calculated values of the thermal pressure coefficient using the $\operatorname{LIR}^{(2)}$ model produce quantitative agreement. Tables 47 present a greater test of these models, because only the

Figure 8. Experimental values of the thermal pressure coefficient versus density for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ fluid compared with the thermal pressure coefficient using $\operatorname{LIR}^{(1)}, \operatorname{LIR}^{(2)}$ and $\operatorname{LIR}^{(3)}$ at 280 K .

Table 7. Comparison between the calculated and experimental values of $(\partial P / \partial T) \rho$ for supercritical $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$.

$\begin{aligned} & T \\ & (\mathrm{~K}) \end{aligned}$	$\begin{aligned} & P \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \rho \\ & \left(\mathrm{mol} \mathrm{l}^{-1}\right) \end{aligned}$	$(\partial p / \partial T)_{\rho}\left(\mathrm{MPa} \mathrm{K}^{-1}\right)$			
			Exp	$\mathrm{LIR}^{(1)}$	$\mathrm{LIR}^{(2)}$	$\mathrm{LIR}^{(3)}$
660.0000	25.0000	5.9795	0.2088	0.6544	0.2031	0.1949
660.0000	30.0000	6.2172	0.2337	0.7314	0.2236	0.2159
660.0000	35.0000	6.4112	0.2526	0.7987	0.2413	0.2342
660.0000	40.0000	6.5762	0.2753	0.8591	0.2570	0.2508
660.0000	50.0000	6.8491	0.3096	0.9657	0.2846	0.2801
660.0000	60.0000	7.0721	0.3390	1.0593	0.3085	0.3060
660.0000	70.0000	7.2623	0.3645	1.1438	0.3299	0.3296
660.0000	80.0000	7.4293	0.3870	1.2216	0.3495	0.3513
660.0000	90.0000	7.5788	0.4070	1.2943	0.3677	0.3718
660.0000	100.0000	7.7149	0.4247	1.3630	0.3847	0.3912

$\operatorname{LIR}^{(2)}$ model is able to predict accurately both the thermal pressure coefficient of the liquid and supercritical fluids. The LIR ${ }^{(3)}$ model yields good results for toluene, but deviates significantly for benzene, in contrast to the experimental values of the thermal pressure coefficient, whereas the $\operatorname{LIR}^{(1)}$ model is rather inaccurate for both benzene and toluene fluids.

4. Result

In this paper, we have derived an expression for the thermal pressure coefficient of dense fluids $\left(\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{CO}\right.$, $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, n-\mathrm{C}_{4} \mathrm{H}_{10}$, iso- $\mathrm{C}_{4} \mathrm{H}_{10}, \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$) using the linear isotherm regularity. Unlike previous models, it has been shown in this work that the thermal pressure coefficient can be obtained without employing any reduced Helmholtz energy. Only $p-v-T$ experimental data have been used for calculating the thermal pressure coefficient [19]. Comparison of the calculated values of the thermal pressure coefficient using the linear isotherm regularity with the values obtained experimentally show that validity of the use of the

Figure 9. Experimental values of the thermal pressure coefficient versus density for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ fluid compared with the thermal pressure coefficient using $\operatorname{LIR}^{(1)}, \operatorname{LIR}^{(2)}$ and $\operatorname{LIR}^{(3)}$ at 660 K .
linear isotherm regularity for studying the thermal pressure coefficient of monatomic dense fluids is doubtful. The validity of the use of the linear isotherm regularity equation state for calculating the thermal pressure coefficient of polyatomic dense fluids is also imprecise. In this work, it has been shown that the temperature dependences of the intercept and the slope using the linear isotherm regularity are nonlinear. This problem has led us to try to obtain the expression for the thermal pressure coefficient using the extended intercept and slope of the linearity parameters versus inverse temperature to second order. The thermal pressure coefficients predicted from this simple model are in good agreement with experimental data. The results show that the accuracy of this method is generally quite good.

Acknowledgment

The authors thank Payame Noor University for financial support.

References

[1] Moeini V 2006 J. Phys. Chem. B 1103271
[2] Ghayeb Y, Najafi B, Moeini V and Parsafar G A 2003/2004 High Temp.-High Pressures 35/36 217
[3] Parsafar G and Mason E A 1994 Phys. Rev. B 493049
[4] Parsafar G and Mason E A 1993 J. Phys. Chem. 979048
[5] Parsafar G, Moeini V and Najafi B 2001 Iran J. Chem. Chem. Eng. 2037
[6] Najafi B, Parsafar G and Alavi S 1995 J. Phys. Chem. 999248
[7] Barker J A and Henderson D 1976 Rev. Mod. Phys. 48316
[8] Macdonald J R 1969 Rev. Mod. Phys. 40316
[9] Xu J and Herschbach D R 1992 J. Phys. Chem. 962307
[10] Huang Y H and O' Connell J P 1987 Fluid Phase Equilib. 3775
[11] Hensel F and Uchtmann H 1989 Annu. Rev. Phys. Chem. 4061
[12] Ihm G, Song Y and Mason E A 1991 J. Chem. Phys. 943839
[13] Stewart R B and Jacobsen T 1989 J. Phys. Chem. Ref. Data 18 639
[14] Jacobsen R T, Stewart R B and Jahangiri M 1986 J. Phys. Chem. Ref. Data 15735
[15] Goodwin R D 1985 J. Phys. Chem. Ref. Data 14849
[16] Younglove B A and Ely J F 1987 J. Phys. Chem. Ref. Data 16 577
[17] Goodwin R D 1988 J. Phys. Chem. Ref. Data 171541
[18] Goodwin R D 1989 J. Phys. Chem. Ref. Data 181565
[19] Ely J F and McQuarrie D A 1974 J. Chem. Phys. 604105

[^0]: ${ }^{3}$ Author to whom any correspondence should be addressed.

